Turbulence Homework 3

Stochastic Tools in Turbulence, AEM-ADV18
Instructor: William K. George, 2013-02-12
You will find almost all the answers in Appendices C, D and E of WKG's 'Lectures in Turbulence for the 21st Century. Don't just agree with them. Learn to do them yourselves!

1. What is a Fourier Series representation? What kind of signals can it be applied to? How do you find the Fourier Series coefficients?
2. Consider a saw-tooth wave defined in the following manner.

$$
\begin{equation*}
u(t)=t-n T_{p} \tag{1}
\end{equation*}
$$

where T_{p} is the period and n is an interger for which $-\infty<n<\infty$. Find its Fourier Series representation and plot how the signal is built up as each new Fourier mode is added.
3. Do the same steps for a square wave defined by:

$$
\begin{align*}
u(t) & =1 & & ; 0 \leq t \leq T_{p} / 2 \\
& =0 & & ; T_{p} / 2 \leq t \leq T_{p} \tag{2}
\end{align*}
$$

4. What is a Fourier transform? What is the inverse Fourier Transform?
5. Compute the Fourier Transform of the so-called top-hat function given by:

$$
\begin{align*}
u(t) & =1 & & -T / 2 \leq t \leq T \\
& =0 & & |t| \geq T \tag{3}
\end{align*}
$$

This is a very important FT, since it appears often as a window function. Try expressing your answer as a sinc function
6. What is the Fourier Transform of the triangle function (or Barlett window) defined by:

$$
\begin{align*}
u(t) & =1-|t| / T & & |t| \leq T \\
& =0 & & |t|>T \tag{4}
\end{align*}
$$

This too is a very important window function, so remember it. See if you can express you answer in terms of the sinc function.
7. Compute the inverse Fourier transform coefficients of:

$$
\begin{equation*}
\hat{u}(f)=\sqrt{2 \pi T} \exp \left(-(2 \pi f T)^{2} / 2\right) . \tag{5}
\end{equation*}
$$

(Hint: you need to complete the square in the integration. And it helps if you remember that the integral of $(1 / \sqrt{2 \pi T}) \exp \left(-t^{2} / 2 T^{2}\right)$ is just unity.) These are an important Fourier transform pair, so remember them.
8. What is the problem taking the Fourier Transform in the ordinary sense of $u(t)=1$? Show how you can define a generalized function that recovers $u(t)$ in the limit. And then show how it can be used to compute the Fourier Transform of 1 in the sense of generalized functions. What is our shortcut notation for all of this?
9. Now use you knowledge of generalized functions to derive in the same way as above the Fourier Transform of $\exp \left(+i 2 \pi f_{o} t\right)$ where f_{o} is a fixed frequency. And show how you can represent all of this using the same functional symbol as above. What would be the Fourier Transform of $u(t)=\exp \left(-i 2 \pi f_{o} t\right)$?
10. Use all the things you have learned above to compute the Fourier Transform of the string of delta functions given by:

$$
\begin{equation*}
g_{s}(t)=\sum_{n=-\infty}^{\infty} \Delta t \delta(t-n / \Delta t) \tag{6}
\end{equation*}
$$

where Δt is the time between pulses.

